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Short-sequence-repeat (SSR) sequencing was applied to 127 Mycobacterium avium subsp. paratuberculosis
isolates typed by mycobacterial interspersed repetitive unit–variable-number tandem repeats (MIRU-VNTR)
and IS900 restriction fragment length polymorphism (RFLP). Combined MIRU-VNTR and SSR typing fol-
lowed by secondary IS900 RFLP typing is an improved approach to high-resolution genotyping of this
pathogen.

Mycobacterium avium subsp. paratuberculosis is the etiolog-
ical agent of Johne’s disease or paratuberculosis, a chronic
granulomatous enteritidis in ruminants, known since 1895 (11).
Paratuberculosis has become a prevalent infectious disease
problem for dairy cattle herds, leading to significant economic
losses for producers in most developed countries (19), and is
suspected to be associated with Crohn’s disease in humans
(21). An important requirement of European Union or U.S.
paratuberculosis control programs is the development of effi-
cient molecular epidemiological methods to trace paratuber-
culosis outbreaks and interspecies transmission and to study
the potential role of wildlife and/or the environmental reser-
voir.

IS900 restriction fragment length polymorphism (RFLP)
analysis is the most extensively used method for molecular
typing of M. avium subsp. paratuberculosis (4, 26). However,
this technique can require months for culturing of the slow-
growing mycobacteria prior to DNA purification. Moreover,
IS900 fingerprinting is difficult to standardize and provides
insufficient resolution for discriminating different strains of this
genetically homogeneous pathogen.

Multiple-locus variable-number tandem repeat analysis
(MLVA) is now established for fast, PCR-based typing of
many bacteria. MLVA usually indexes copy number polymor-
phisms by sizing of PCR fragments amplified from targeted
variable-number tandem repeat (VNTR) loci (7, 12, 16).
Short-sequence-repeat (SSR) typing is a variation which di-

rectly analyzes the sequence of simple homopolymeric tracts of
single, di- or trinucleotides (3, 6, 8, 10, 17, 18). Classical MLVA
and SSR typing results in numerical genotypes, reflecting the
repeat copy numbers in the respective markers, which are
especially convenient for online comparisons and phylogenetic
analyses (2). These methods are particularly informative for
highly clonal bacteria, such as Mycobacterium leprae, Mycobac-
terium ulcerans, Bacillus anthracis, and Yersinia pestis (1, 9, 13,
15, 28). An MLVA system based on genetic elements called
mycobacterial interspersed repetitive units (MIRUs) (24, 25)
has been internationally standardized as an alternative to
IS6110 RFLP analysis for Mycobacterium tuberculosis typing
(23).

MLVA based on MIRUs (4, 5, 20, 26) and SSR (3, 6, 8, 10,
17, 18) typing has been proposed for M. avium subsp. paratu-
berculosis, following bioinformatic scans of the K10 strain ge-
nome (14). These schemes target up to 8 MIRU-VNTR (26)
and 11 SSR markers (3), respectively. So far, these methods
were only separately evaluated for determining the clonal di-
versity of M. avium subsp. paratuberculosis. Here, in order to
compare their individual and combined performances, we ap-
plied SSR typing to a collection of 127 M. avium subsp. para-
tuberculosis isolates from different host and geographic origins,
selected from a larger set of 183 such isolates previously typed
by MIRU-VNTR and IS900 RFLP (26). These isolates all
originated from different farms and were therefore assumed to
be epidemiologically unlinked. However, some unidentified
transmission links due to cattle trading cannot be excluded.

SSR typing was performed according to the method of
Amonsin et al. (3) using BigDye Terminator v3.1 sequencing
kits and a 3730XL DNA analyzer (Applied Biosystems,
Courtaboeuf, France). The collection studied was divided into
four panels (see Table S1 in the supplemental material). Panel
1 was comprised of 40 isolates, which were selected for having
different combinations of INMV (INRA, Nouzilly, MIRU-
VNTR) and IS900 RFLP profiles. In this panel, 19 SSR types
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were detected, compared to 13 MIRU-VNTR types and 22
IS900 RFLP types. When SSR typing and MIRU-VNTR typ-
ing were considered in combination, 31 types were obtained.
Eight out of the nine MIRU-VNTR cluster types were subdi-
vided by SSR typing, and conversely, the eight SSR cluster
types were all subdivided by MIRU-VNTR typing, demonstrat-
ing the mutually additive discriminatory powers of both PCR
techniques. SSR typing combined with IS900 RFLP discrimi-
nated 38 of the 40 isolates of panel 1, only slightly less than the
combination of MIRU-VNTR typing and IS900 RFLP.

To further evaluate the cumulative discriminatory power of
the typing techniques, 43 isolates were selected in panel 2 with
the same most-predominant INMV2 profile and the same R01
IS900 RFLP profile, and 40 isolates were selected in panel 3
with the same second-most-predominant INMV1 profile and
the same R01 IS900 RFLP profile (see Table S1 in the sup-
plemental material) (26). SSR typing subdivided the single
combined INMV-RFLP profiles of panels 2 and 3 into 16 types
and 14 types, respectively. Because of this selection bias of the
strain panels (see below), discriminatory indexes for each
method or combination of methods provided in Table S2 in the
supplemental material should be considered with caution.

Two methods were used to identify the most informative
SSR loci. The relative evolutionary rates of the SSR loci were
first analyzed by calculating the frequency of their involvement
in discrimination by single-locus variation (SLV), i.e., single-
allele differences among closest genotype relatives. SLVs were
identified by calculating a minimum spanning tree of SSR-
based genotypes, using the software program Bionumerics,
version 4.6 (Applied Maths, St-Martens-Latem, Belgium).
Since they discriminate closely related strains, loci most fre-
quently involved in SLVs should intrinsically be those with a
higher evolutionary rate if the markers are not frequently sub-
ject to convergence (independent evolution to the same state).
According to this criterion, the top five SSR markers were loci
2, 1, 9, 8, and 7 in decreasing order of SLV frequencies across

the three panels (Fig. 1). The allelic diversities (h) of the SSR
loci were then calculated as follows: h � 1 � �xi

2 [n/(n � 1)],
where xi is the frequency of the ith allele at the locus and n is
the number of isolates. From two to six alleles were detected
for the six markers that showed variability among the three
panels. Consistently, at least three of the above top five loci
systematically displayed the highest allelic diversity in any of
the three strain panels (see Table S2 in the supplemental
material). Interestingly, a substitution of one nucleotide in the
repeat unit of marker 8 (G to A) was detected for two isolates.
Conversely, SSR loci 3, 4, 5, 10, and 11 did not show any
variation among the three strain panels. The variability of
MIRU-VNTR markers has already been described for the
larger collection by Thibault et al. (26).

The M. avium subsp. paratuberculosis strain 316F is one of
the strains used for vaccination against paratuberculosis world-
wide. We applied SSR typing to five isolates of different 316F
vaccine batches (see Table S1, panel 4, in the supplemental
material), two of which were previously found to be genetically
divergent by single-MIRU-VNTR locus and/or one or three
IS900 RFLP band differences (26). These differences were
fully corroborated by allelic differences in one or more SSR
loci for these two isolates compared to the three others. This
observation thus confirms our hypothesis of genetic drift
among 316F isolates from different sources, in particular be-
tween Weybridge and Mérial batches (26). On the other hand,
the consistently complete conservation of the SSR loci, as well
as that of the MIRU-VNTR loci and the IS900 fingerprints, in
the three remaining isolates of Mérial origin is consistent with
the stability of SSR loci observed after analysis of serial pas-
sages or single colonies from individual strains (3, 10). These
observations support the potential of the markers involved for
epidemiological tracking of longitudinal transmission.

In conclusion, because of their mutually cumulative discrim-
inatory powers, combined MIRU-VNTR and SSR typing is an
improved PCR-based approach to high-resolution genotyping

FIG. 1. Distribution of SLVs in SSR loci among M. avium subsp. paratuberculosis isolates. Events detected among 123 isolates from panels 1
to 3 are shown.
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of M. avium subsp. paratuberculosis. Our study was not de-
signed to generally compare the resolution powers of the two
techniques, since panels 2 and 3 were deliberately biased for
including isolates with preidentified identical MIRU-VNTR
(and IS900 RFLP) genotypes. While SSR typing frequently
subdivided these prevalent MIRU-VNTR (-IS900 RFLP)-
based clusters, the converse situation may also be expected
based on panel 1 analysis results, i.e., MIRU-VNTR typing
might frequently subdivide prevalent SSR-based clusters. Re-
gardless, prioritization between MIRU-VNTR and SSR typing
may rely on technical and practical considerations rather than
on discriminatory power. MIRU-VNTR typing is probably
more accessible to most laboratories due to the use of PCR
without sequencing, its low cost, and the ease of interpretation.
In contrast, even after double-strand sequencing, reading of
SSR alleles with �8 or 9 repeats required some expertise and
allele assignations were based on a consensus between two
readers. Because of too-strong stutter peak effects, alleles with
more than 11 repeats in the two most variable SSR loci (1 and
2) could not be reliably read despite repeated sequencing of
both DNA strands. Therefore, in order to avoid interpretation
errors, we recommend conservatively assigning such alleles as
�11, despite some loss of information. Therefore, according to
our experience, the most cost-effective and efficient strategy for
strain discrimination would consist of using MIRU-VNTR typ-
ing first, followed by SSR typing and IS900 RFLP for potential
discrimination of the remaining clustered isolates and optional
confirmation of discriminated isolates. Likewise, primary or
secondary screens based on SSR typing may use the most-
variable loci 1, 2, 7, 8, and 9 in priority. It is noteworthy that
loci 1, 2, 8, and 9 were also identified as the most informative
SSR markers in a collection of M. avium subsp. paratubercu-
losis isolates from the United States (10), which is encouraging
for future standardization. Finally, although the majority of
our strains were from French and bovine origins, no obvious
correlations were found between these and other geographic

or host origins and MIRU-VNTR-SSR genotype groups (Fig.
2). Importantly, our collection was comprised only of “C” or
cattle phenotype M. avium subsp. paratuberculosis strains, even
those isolated from ovine hosts, and did not include any rep-
resentative of the rare “S” or sheep phenotype. Consistently,
neither multilocus sequence analysis (27) nor large sequence
polymorphism analysis (22) revealed any correlation between
host provenance and “C”-type genotypes. Taken together,
these observations indicate extensive interspecies transmission
of M. avium subsp. paratuberculosis, which in turn underlines
the need for improved epidemiological control to prevent fur-
ther spread from the paratuberculosis reservoir(s).

We thank Raùl Barletta (Department of Veterinary and Biomedical
Sciences, University of Nebraska, Lincoln) for providing the M. avium
subsp. paratuberculosis K10 strain and Claude Couquet (Laboratoire
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